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A study is made of intersection properties of independent random walks in 
d-dimensional lattice space Z a. A simple method is developed which makes it 
possible to estimate intersection probalities of two random walks with killing 
rate m directly. It is expected that the method can be generalized and extended 
to other issues. 
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1. I N T R O D U C T I O N :  N O T A T I O N  A N D  M A I N  R E S U L T S  

Intersection properties of r andom walks or  Brownian paths have been 
investigated extensively by many  authors  (1'v-9'1~ because, in addit ion to 
their own attraction, their properties have been known to be intimately 
related to quan tum field theory and statistical mechanicsJ  35) Previous 
methods  in the s tudy of the intersection properties of r andom walks have 
involved probabilistic arguments  ~79,1113~ and renormalizat ion group 
approaches,  ~'1~ which are not  so elementary. 

The aim of  this paper  is to present a simple method  by which upper 
and lower bounds  of  intersection probabilities of two r andom walks with 
killing rate (mass) m can be estimated directly. Al though the results of this 
paper  are known,  (a~ the method  is simple and gives the results easily. I 
now describe briefly the main  ideas used in this paper. Let co and co' be 
simple r andom walks in Z a. Then either co and co' intersect each other  or  
else they are avoiding. Thus, the decoupling identity 

1 = Z(co n co' = ~ )  +.Z(co c~ co' # ~ )  (1.1) 
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holds. Next, assume that co c~ 60':~ ~ .  We may split the walk 60 such that 

co = 601 w602 (1.2) 

where co I does not intersect 60' except at the endpoint, and co 2 has no 
restrictions. Thus the sum over 60 2 will be factorized. The idea of the path 
(walk) splitti.ng method essentially the same as the above was also 
employed by Lawler under the name of the modified stopping time. (12) 
Here I use the decoupling identity and the path splitting method repeatedly 
and systematically to obtain explicit bounds on intersection probabilities. 
Detailed descriptions are postponed to the next section. 

I believe that the method used in this paper can be generalized and 
extended to other issues, such as intersection properties of random paths 
and the diffusion of self-avoiding walks. In fact, I initiated the study of the 
method to investigate self-avoiding walks./14) It turns out that an applica- 
tion of the method gives a simple derivation of the Brydges-Spencer lace 
expansion. (6) It may be possible that Slade's results and its proofs (~s) on the 
diffusion of self-avoiding random walks can be improved by using this 
method. 

I now introduce the notation. A random walk on Z d is a finite sequence 
60: {/1, t, + 1 ..... t2} -+ Z a, written as ~o = {60(tl), 60(tl + 1),..., 60(t2)}, with 
leo(i+ 1 ) -  co(i)l = 1, where, for x, y e Z  a, I x - Y l  is the Euclidean distance 
between x and y. Let leo I be the number of the steps (not the sites) of co. 
For given x, y E Z  d and tl, t 2 E Z  + with tl ~< t2, write 

W(x, y; tl, t2) 

= { 6 0 : { t ~ , . . . , t 2 } ~ Z d : o g ( t ~ ) = x , ~ o ( t 2 ) = y , [ 6 0 ( i + l ) - - o J ( i ) l = l }  (1.3) 

and 

W(x, y ) =  U W(x, y; O, t) (1.4) 
t ~ Z  + 

W(x) = U W(x, y) 
y e  Z d 

Denote the sets of random walks which do not visit the starting site after 
the first step by 

Wl(x, y; tl, t2) = {~oe W(x, y; tl, t2): m(i) ~ x i f  i ~ tl} 

Wl(x, y)= W (x, y; o, t) (1.5) 
t ~ Z  + 

W,(x)= U W,(x, y) 
y e  z a 
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Next let us define the intersection probability between simple random 
walks with killing rate m > 0. tl~ For  a given m > 0, let ~ = (2d+ m 2) 1 and 

z(m)= ~ ~i~l (1.6) 
oJ E w(o) 

where the term corresponding to icol = 0  equals to 1. The intersection 
probability for two random walks starting at 0 and x, respectively, is 
given by 

P(0, x; m) =z (m)  2 
~) e W(O) 
o~' ~ W ( x )  

~l~l + I~'l Z(co a a~' # ~ )  (1.7) 

and the average intersection probability for two walks is given by 

g(m) = ~ maP(O, x; m) 
x 

We then have the following result. (1~ 

(1.8) 

T h e o r e m  1.1 .  

c~ independent of m such that the bounds 

Cl Iln ml-l)  tin ml- '  
czma-a~ <...g(m)<... ~c'2ma-4, 

c~2 (c;, 

hold for small m. 

t There exist positive constants cl, c2, c3, Ctl ,  C2, and 

d = 4  

d > 4  

d < 4  

Hemark. (a) Similar results to the above have been obtained by 
Felder and Fr6hlich tl~ by using a renormalization group equation. See 
also Aizenman. (1) 

(b) For any dimension, explicit upper and lower bounds for g(m) are 
given in Proposition 3.1 in Section 3. 

Now consider the probabilities that two random walks starting at the 
origin do not meet at a common site after the first step. We write that 

•,(m) = ~ ~J~l (1.9) 
(DE WI(O ) 

and 

P 2 ( m )  = Z l ( m  ) 2 E ~[coll + [co2] x((D 1 f-5 ( ( D 2 -  {0 } ) =  ~ ) ( 1 . I 0 )  
col,co2 ~ W~(O) 
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where in the summands the terms corresponding to the walks with no step 
equal to 1. 

We have the following result. 

T h e o r e m  1.2. There exist positive constants cl, 122, c3, C'1, C2, and 
c; independent of m such that the bounds 

cl]ln m[-1]  fc~ ]ln m] i/2 d = 4  

c2m4-d~ ~ p2(m)~< ~ c'2rn '4-d,/2, d= 3 
I I 

c33 {,c'3, d> 4 
hold for small m. 

Remark. (a) For walks of fixed length, results analogous to those in 
Theorem 1.2 have been obtained by Lawler (n 113) by using probability 
arguments. 

(b) Explicit upper and lower bounds for Pz(m) are given in Proposi- 
tion 2.2. 

The contents of the paper are as follows: In Section 2, I describe the 
method in detail, and then prove Theorem 1.2. The proof of Theorem 1.1 
is given in Section 3. Finally, I give a brief description on possible 
generalizations and applications of the method in Section 4. 

2. I N T E R S E C T I O N S  OF T W O  R A N D O M  W A L K S  

In this section I describe the main ideas used in this paper in detail, 
and then obtain explicit upper and lower bounds for P2(m), from which 
Theorem 1.2 will follow as a corollary. I first introduce more notation. Let 
us denote the set of random loops by L(x), 

L ( x ) =  ~) W(x,x;O,t) (2.1) 
t--O 

and let 
1 d 

D(k) = dj~l= cos(kj) (2.2) 

Recall the definition of W(x, y) and Wl(x, y) in (1.4) and (1.5), respec- 
tively. For a given ~ = (2d+ m2) -1, let 

6(x, y; m) = ~ (/o~1 
~W~x.y) (2.3) 

Gx(x, y; m) = ~ ~1~1 
ooe  W l ( x , y )  
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Then  it is well known that  

We write that  

G(x, y ; m ) = f  dk [1 -2d~D(k)]  l e i k . ( y - -  x )  

[_~,~]d 

l(rn) = 
o) e L ( x )  

G(x, y; m) 2 

(2.4) 

F2(m) = ~ (2.5) 
y ~  Z a 

F z ( m ) =  ~ Gl(X, y;m) 2 
y e  Z d 

Then  it follows from an inspection that  

G(x, y; m) = l(m) 2 Gl(x, y; m) (2.6) 

For  a given r a n d o m  walk co E W(x, y;O, t), one defines re) to be the 
r a n d o m  walk with reverse ordering: 

re) = {(rco)(0) = co(t), (rco)(1) = co(t - 1) ..... (rco)(t) = co(0)} 

Thus,  if co ~ W(x, y; 0, t), then rco ~ W(y, x; O, t). For  any co ~ W(x, y; O, t), 
let c o - c o ( 0 )  be the r a n d o m  walk obta ined  by restricting co on {1 ..... t}: 
c o - c o ( 0 )  = {co(1),co(2) ..... co(t)}. The quant i ty  c o - c o ( t ) i s  defined ana-  
logously. 

I now turn to the descript ion of the main  idea in this paper.  Consider  
the quanti t ies defined by 

H(m) = _ ~ ~l~~ + I~"1Z(co' ~ (co - co(0)) = Q5 ) (2.7) 
(o, ~o' E W I ( 0  ) 

H ( m )  = ~ ~ I~ + I~~ )~(CO' ~ (CO - -  CO(0)) 5& ~ )  (2.8) 
~,~o' e wl(0) 

F r o m  the definition of P2(m) in (1.10), it follows that  

P2(m) = Zl(m) 2 H(m) (2.9) 

Using the decoupling identi ty 

1 = z(co' ~ ( c o -  co(o)) = ~ )  + z ( ~ '  ~ ( c o -  co(o)) # ;~) (2.1o) 

we obta in  that  

z l (m)  2 = H(m) + ffI(m) (2.11) 
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For given co e WI(0, y; 0, t) and co' e WI(0. y'; 0, t') with co' c~ (00 - co(0)) 
r ~ ,  let s be the latest step (time) at which co -  co(0) intersects 00'. Let 

x = co(s) and s ' =  max{t": 00'(t")= x}. Let us split the random walks 00 and 
00' such that 

co = 001 u 002, co' = co'l u 00; (2.12) 

where 001 ~ ml(0 ,  x; 0, s), 002 e Wl(x, y; s, t), 00'1 e WI(O, x; O, s'), and 
00'2~ Wl(x, y';s', t') with co'1c~(002-002(s ) )=~3,  co;c~ (002-co2(s))=~,  
and 0r u 00;. Using (2.12), the reverse ordering invariance, and sum- 
ming over 001 and x, we obtain from (2.8) that 

xEZ d ~oiE W(x,O): ~o2~ai(x): 

• z(a'  n 00 (0)) = z(al 00 (0)) = (2.13) 

It may be instructive to represent /~(m) diagrammatically (see Fig. la). 
Notice that the sum over col has been factorized to given GI(0, x). We 
write 

/~(m) = /~ ' (m)  - / ~ l ( m )  (2.14) 

where ffI'(m) is defined by removing the restriction 0r w00~ from the 
definition of/~(m) in (2.13), and/~l (m)  is defined by replacing 0 r 002 u 002 
by 0 e 00 2 w 00; in the definition of H(m). 

Let us decompose ffI'(m) further. We use the decoupling identity 

)~(00tl (")(002--002(O))= ~ ) =  l -- z((J)tl f")(002--002(O)) ~ ~ )  (2.15) 

and the splitting method similar to that in (2.12): For given co] e W(x) 
and 002 e Wl(x) with 00'1 c~ (002-002(0))r ~ ,  let s ' >  0 be the eariest step 
(time) at which 00] intersects 002-002(0) at y=00'l(s'). Then one may 
split the walk 00'1 and 00]=003w004, where co3E W(x,y;O,s ' )  with 
r00eWl(y ,x;O,s ' ) ,  004eW(y), and (003-003(s'):~(002-002(0))=~. 
Substituting (2.15) into H'(m) and using the above splitting method, we 
obtain from (2.13) that 

B ' (m) =/~2(m) - H3(m) (2.16) 

where 

/~r2(m)= ~ Gl(0, x) 2 E ~]cu�89189 
x: o~2.~ ~ W~(x) 

x~0 
(2.17) 
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and 

&(m)= y__, ~,(0, x) E Y, G,(0, y) 
x: co2,oJ�89 Wl(x)  veooz c92(0) 

x :#0 

• Y~ ~l~ + ~~ + r"4 z( (col  c~ (o . ,2 -  co2(o)) = ~ )  
co 3 ~ W(x, y): 

ro93E Wl(y, x), O~co 3 

x 2((0)3 - { y } )  c~ (e) 2 - 002(0))  = ~ }  (2 .18 )  

The quantities H and H3 may be represented diagrammatically as in Fig. 1. 
From (2.17) it follows that 

ffI2(m) = Ix~o Gl(O, x)2] H(m ) (2.19) 

and so an inspection shows that 

H(m) +/t2(m) = F2(m) H(m) (2.20) 

The above result is summarized as follows. 

k e m m a  2.1. Let H(m), FI~(m), and H3(m) be defined as in (2.7), 
(2.14), and (2.18), respectively. Then the relation 

Z l ( m )  2 = F 2 ( m )  H(m) - / ~ l ( m )  - / ~ 3 ( m )  

holds 

0 

o02 

Y 

003 . 

o 

a) H,=)  b) H3(,,,I 

Figure 1 
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Proofi The lemma follows from (2.11), (2.14), (2.16), and (2.20). 

Let us turn to the proof of Theorem 1.2. The main result in this section 
are the following explicit bounds for P2(m). 

P r o p o s i t i o n  2.2. Let P2(m) be defined as in (1.10). Then the 
bounds 

~2(m ) -1 ~< P2(m ) ~< l(m)3/2/~2(m)l/2 

hold. 

Proof of Theorem 1.2. From (2.5) and (2.6) it follows that 

F2(m ) =/ (m)  2 ['2(m) 
(2.21) 

z(m) = l(m) z,(m) 

Also, it is well known that 

l 2 ~ d  k <~ 1 - D ( k ) < . l k :  (2.22) 

on [-~r,  g]d. The definitions of F2(m ) and l(m) in (2.5) and (2.6) imply 
that 

F2(m)=(27z) ale ~,=3dk[ 1 

l(m)=(21t)-df~ ~,~]a dk [ 1 

z(m) = (2d+ mZ)/m 2 

2d 3 -2 
2d+-2D(K)J 

2d D(k) ]  1 
2d + m 2 

(2.23) 

The proof of Theorem 1.2 follows from (2.21)-(2.23) and Proposition 2.2. 
The rest of this section is devoted to a proof of Proposition 2.2. 

Proof of Proposition 2.2. (a) Lower bound. The lower bound follows 
from Lemma 2.2 and the fact that/11(m ) + / t3(m)  ~> 0. 

(b) Upper bound." In order to obtain the upper bound, we use 
Lemma2.1 and the Schwarz inequality. The method of the Schwarz 
inequality has also been used by Lawler ~n'~2) for walks of a fixed length. 
Recall the definition of H(m) in (2.7). Using the Schwarz inequality and the 
fact that w l ( 0 ) c  w(0), we obtain the bound 

H(m) 2 <~ gl(m) Q(m) (2.24) 
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where 

Q(m)=  ~ ~ ~I~21 + l~il + Io41 

o)2e WffO) o)~e w(O) 
~ e wt (o)  

0)r  • z ( 0 ) i  :~ (0)~ - 0 ) 2 ( 0 ) )  = 2 5 )  z (  ~ ~ (0)2 - 0 ) ~ ( 0 ) )  = 2 5 )  (2.25) 

We then use the decoupling identity (2.15), the splitting method co'1 = 
(2) 3 o 0) 4 as below (2.15), and sum over 0) 4 to conclude that 

Q(m) = z(m) H(m) -- l.(m) Q2(m) 

where 

(2.26) 

U92,co�89 WI(O ) y fD3G W(O,y): 
ro)3e W(y,O) 

X Z ( ( D I  U'~ ((2) 2 - -  ( D 2 ( 0 ) )  = 2 5 )  Z( ( ( .o  3 - -  { j } )  u~ ((D 2 - -  ( D 2 ( 0 ) )  = 2 5 )  

(2.27) 

Combining (2.24), (2.26), and Lemma 2.1, we obtain 

H(m) 2 ~< z1(m) z(m)[H(m) - Q2(m)~ 

= za(m) z(m){ [Zl(m) 2 + ff'Ii(m)]/F2(m)} 

x zl(m) z(m){ [ffI3(m)/F2(m)] - Q2(m)} (2.28) 

Using the translational invariance and the fact that 
Zx  GI(O, x) Gl(x, y -x )<~f f2(m) ,  we obtain from (2.18) and (2.27) that 

/ ] 3 ( m )  ~< F2(m) Q2(m) (2.29) 

Next, consider / ~ x ( m ) ,  which has been defined by replacing 0 r 0)2 w 0); by 
0 e  o92 u 0)~ in the definition of D(m) in (2.13). By undoing the splitting, we 
obtain that 

co, co' e W(0) 
0 e (m - co(0)) u (co' - o)'(O)) 

and so 

Zl(m) 2 + Hi(m) ~< z~m) 2 (2.30) 

Substituting (2.29) and (2.30) into (2.28), and using (2.9) and the fact that 
z (m)= l (m)  zl(m), we obtain the upper bound in the proposition. This 
completes the proof. 



328 Park 

3. AVERAGE INTERSECTION PROBABILITY OF 
TWO R A N D O M  WALKS 

We obtain explicit upper and lower bounds for g(m) in this section. 
Then Theorem 1.1 will follow as a corollary. A upper bound of g(m) is 
obtained by employing a method similar to that used to obtain the equality 
in (2.26). In order to get a lower bound, we use the method suggested by 
Aizenman (see the proof of Proposition 7.2 of ref. 1). The following is the 
main result in this section. 

Proposit ion 3.1. Let g(m) be defined as in (1.8). Then the bounds 

�88 ) <~ g(m) <<, md/~(m)2/['2(m ) 

hold. 

Proof  o f  Theorem l . I .  The theorem follows from (2.21) (2.23) and 
the above proposition. 

I now produce the proof of Proposition 3.1. 

Proof  o f  Proposition 3. I. (a) Upper bound." Recall the definition of 
g(m) in (1.8). We use the splitting method similar to that used in (2.12): 
For  given co e W(0, z; 0, t) and co' ~ W(x, z'; O, t) with co • co' ~ ~ ,  let s be 
the latest step at which co intersects co' at y=co(s) ,  and let s' =max{t" :  
co'(t") = y}. We split co and co' as 

co = (J) l k..) CO2 and co' = co'l w co; 

where 0) I ~ W(O, y; O, s), co2 ~ W I ( y ,  z; s, l), 03' 1 ~ W(X, y; O, s'), and co~ e 
WI(y,  z'; s', t') with co'1 c~ (co2 - co2(s)) = ~ and oo'2 c~ (co2 - co2(s)) = ~ .  
Using the above splittings, translational and reverse ordering invariance, 
and summing over col, it follows from (1.7) and (1.8) that 

g ( m ) = m a z ( m )  i Q(m) 

where Q(m) has been defined in (2.25). We now use (2.26), Lemma 2.1, 
(2.29), and (2.30) to conclude that 

g(m) = ma[ H(rn) - Q2(m)] 

<~ ma{)~l(rn) 2 + ffll(m)/F2(m) } + ma{ [ ffI3(m)/F2(m) ] - Qz(m)} 

<~ maz(m)2/I'z(m ) 

This give the upper bound in the proposition. 
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(b) Lower bound." We use a method similar to that used in the 
proof of Proposition7.2 of ref. 1. Let V(co, Co') be the cardinality of 
{z:zecoc~co'}. Then )~(V(co, Co ' )#0)=;~(co~co '~  ~ ) .  Using the Schwarz 
inequality, we obtain the following bound for g(m): 

where 

g(m)=mdz(m)-2~ 
x t o e  W ( O )  

~o" e W ( x )  

~l~ co') r  

~> mdz(m) -2A(m)/B(m) 

A(m) = ~ ~1~1 + I~,'l V(CO, co') 
co e W(0) 

oJ' ~ W(x) 

B(m) = Z ~ ~1~ol + 1~'1V(~o, CO,)2 
x oJ~ W(0) 

co' e W ( x )  

(3.1) 

(3.2) 

To estimate B(m), we write 

B(m)= 2 Z 2 
ZI ,Z  2 X r  

o~ ~ W ( x )  

~loJl + I~)'1 ) f ( Z l ,  Z2 e CO ~ CO') 

We split the paths conditioning on the site of the first hit. It is easily 
obtained that 

B(m)=2z(m) 2 ~ ~ GI(O, Zl) GI(Z1, z2) 
2 1 , Z  2 X 

x {G,(x, zl) G,(zl, z2) + GI(x, z2) GI(z2, zl)} 

= 4g(m) 2 z,(m) 2 G(m) (3.3) 

Here we have suppressed m in the notation G(x, y). Similarly, we estimate 
A(m) by 

A(m)=  ( ~ 2  2 
z x co e W(0) 

o~' ~ W ( x )  

= z , ( m ?  z(m) 4 (3.4) 
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F r o m  (3.1), (3.3), and (3.4), it follows that  

g ( m )  >i � 88  (3.5) 

The lower bound  follows from (2.21) and the above inequality. This 
completes the p roof  of the proposit ion.  

4. D I S C U S S I O N  

I have derived the upper and lower bounds  on various intersection 
probabilities of r andom walks by using the decoupling identity and the 
path splitting method.  As mentioned in the Introduct ion,  the Brydges 
Spencer lace expansion (6/ for self-avoiding r andom walks can be derived 
easily by using the method  employed in this paper. (14) Possibly Slade's 
result (15) can be improved by a refinement of the method.  

It would be interesting to see an extension of the method to r andom 
paths. For  r a n d o m  walks I have used countable  additivity implicitly. Since 
r andom paths have cont inuous time parameters,  a direct extension of  the 
method to r andom paths seems to be very difficult. 
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